Synthetic prions with novel strain-specified properties.


PLOS Pathogen


31 December, 2015


Moda F, T Le TN, Aulić S, Bistaffa E, Campagnani I, Virgilio T, Indaco A, Palamara L, Andréoletti O, Tagliavini F, Legname G

PLoS Pathog. 2015 Dec 31;11(12):e1005354. doi: 10.1371/journal.ppat.1005354. eCollection 2015.


Prions are infectious proteins that possess multiple self-propagating structures. The information for strains and structural specific barriers appears to be contained exclusively in the folding of the pathological isoform, PrPSc. Many recent studies determined that de novo prion strains could be generated in vitro from the structural conversion of recombinant (rec) prion protein (PrP) into amyloidal structures. Our aim was to elucidate the conformational diversity of pathological recPrP amyloids and their biological activities, as well as to gain novel insights in characterizing molecular events involved in mammalian prion conversion and propagation. To this end we generated infectious materials that possess different conformational structures. Our methodology for the prion conversion of recPrP required only purified rec full-length mouse (Mo) PrP and common chemicals. Neither infected brain extracts nor amplified PrPSc were used. Following two different in vitro protocols recMoPrP converted to amyloid fibrils without any seeding factor. Mouse hypothalamic GT1 and neuroblastoma N2a cell lines were infected with these amyloid preparations as fast screening methodology to characterize the infectious materials. Remarkably, a large number of amyloid preparations were able to induce the conformational change of endogenous PrPC to harbor several distinctive proteinase-resistant PrP forms. One such preparation was characterized in vivo habouring a synthetic prion with novel strain specified neuropathological and biochemical properties.